Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.083
1.
Trop Anim Health Prod ; 56(4): 153, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717731

Ensilage of refused fruit with forage is a viable approach to increase resource use in ruminant feed. The objective of this study was to investigate the impact of ensiling refused melon fruit (RMF) with Canarana grass on the intake, apparent digestibility, serum biochemistry, performance, carcass traits, and meat attributes of feedlot lambs. Four distinct silage treatment types were prepared by ensiling RMF at 0 g/kg (control), 70 g/kg, 140 g/kg, and 210 g/kg (as fed) with Canarana grass. Twenty-eight male Santa Inês lambs (7 lambs per treatment), initially weighing 22.3 ± 1.0 kg at 120 days of age, were distributed in a completely randomized design and confined for a total of 96 days, including a 23-day adaptation period and 73 experimental days in a feedlot. The lambs received the treatment-silage in diets as a complete mixture with a roughage: concentrate ratio of 30:70. The inclusion of RMF in Canarana grass ensilage decreased (P < 0.05) the lambs' intake of dry matter, crude protein and metabolisable energy. The inclusion of RMF in ensilage had a quadratic effect (P < 0.05) on the digestibility of non-fibrous carbohydrates. The serum total protein and cholesterol levels decreased (P < 0.05) with the inclusion of RMF in the ensilage, but we observed no effect on the final weight and average daily gain of the lambs. The feed efficiency increased (P < 0.05) by including RMF in the Canarana grass ensilage. The RMF in the ensilage did not influence cold carcass weight and yield. The fat content of the meat decreased (P < 0.05) with the inclusion of RMF in the ensilage. It is recommended the inclusion of up to 210 g/kg of RMF in Canarana grass ensilage to increase feed efficiency and avoid impacts on the performance and carcass attributes of confined lambs.


Diet , Digestion , Sheep, Domestic , Silage , Animals , Digestion/drug effects , Male , Silage/analysis , Diet/veterinary , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Sheep, Domestic/blood , Animal Nutritional Physiological Phenomena , Animal Feed/analysis , Cucurbitaceae/chemistry , Fruit/chemistry , Random Allocation
2.
Trop Anim Health Prod ; 56(4): 140, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656670

This study evaluated three continuous grazing systems: Brachiaria Brizantha, Clitoria ternatea and naturalized pastures, complemented with commercial concentrate and C. ternatea silage on milk yield, nutrient use and enteric methane (CH4) emissions. Nine multiparous cows of local Zebu breeds, with an average weight of 448 ± 87 kg, were used. The chemical composition of the food was determined. Live weight, milk production, and quality were assessed. Furthermore, serum urea, urea nitrogen, creatinine and glucose in blood were monitored, and nitrogen use efficiency were calculated. Enteric methane (CH4) emissions were estimated using Tier-2 methodology. A 3 × 3 latin square experimental design was applied. The grazing systems of B. brizantha and C. ternatea had the greater live weights of 465.8 and 453.3 kg/cow, although the latter is similar to naturalized pasture. Milk production and quality were not affected by grazing system, with the exception of the non-fat solids, where the C. ternatea system was lower (102.2 g/kg) than the other grazing systems. The crude protein and N intake, and N excretion in feces and urine were lower in naturalized pasture systems (1139.0 g/day). N outputs in milk was high in the C. ternatea system (56.3 g/cow/day). The naturalized pastures systems showed the better feed use efficiency (25.7%) compared to others. Serum urea and blood urea nitrogen were greater in B. brizantha followed by C. ternatea. Enteric CH4 emissions were indifferent among grazing systems when expressed as a percentage of greenhouse gases (7.1%). In conclusion, the grazing C. ternatea supplemented with commercial concentrate and C. ternatea silage maintains milk production and quality, reduced cow/day emissions (by 2.5%) and lowered energy losses as methane.


Animal Feed , Lactation , Methane , Milk , Animals , Cattle/physiology , Methane/analysis , Methane/metabolism , Female , Lactation/physiology , Milk/chemistry , Milk/metabolism , Animal Feed/analysis , Diet/veterinary , Animal Husbandry/methods , Silage/analysis , Animal Nutritional Physiological Phenomena , Brachiaria , Nitrogen/metabolism , Nitrogen/analysis , Nutrients/analysis , Nutrients/metabolism , Fabaceae/chemistry
3.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38581217

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Acidosis , Sheep Diseases , Male , Female , Animals , Sheep , Milk/metabolism , Mastication/physiology , Starch/metabolism , Lactation/physiology , Detergents/metabolism , Silage/analysis , Propionates/metabolism , Fermentation , Rumen/metabolism , Dietary Fiber/metabolism , Dietary Carbohydrates/metabolism , Diet/veterinary , Nutrients , Acetates/metabolism , Acidosis/veterinary , Digestion/physiology
4.
PLoS One ; 19(4): e0296447, 2024.
Article En | MEDLINE | ID: mdl-38635552

The aim of this study was to develop and validate regression models to predict the chemical composition and ruminal degradation parameters of corn silage by near-infrared spectroscopy (NIR). Ninety-four samples were used to develop and validate the models to predict corn silage composition. A subset of 23 samples was used to develop and validate models to predict ruminal degradation parameters of corn silage. Wet chemistry methods were used to determine the composition values and ruminal degradation parameters of the corn silage samples. The dried and ground samples had their NIR spectra scanned using a poliSPECNIR 900-1700 model NIR sprectrophotometer (ITPhotonics S.r.l, Breganze, IT.). The models were developed using regression by partial least squares (PLS), and the ordered predictor selection (OPS) method was used. In general, the regression models obtained to predict the corn silage composition (P>0.05), except the model for organic matter (OM), adequately estimated the studied properties. It was not possible to develop prediction models for the potentially degradable fraction in the rumen of OM and crude protein and the degradation rate of OM. The regression models that could be obtained to predict the ruminal degradation parameters showed correlation coefficient of calibration between 0.530 and 0.985. The regression models developed to predict CS composition accurately estimated the CS composition, except the model for OM. The NIR has potential to be used by nutritionists as a rapid prediction tool for ruminal degradation parameters in the field.


Silage , Zea mays , Animals , Silage/analysis , Spectroscopy, Near-Infrared , Rumen/metabolism , Digestion , Fermentation , Diet
5.
Trop Anim Health Prod ; 56(3): 120, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38607525

The current study evaluated the effects of supplementing cassava root silage (CRS) to dairy cows grazing on Megathyrsus maximus cv Mombasa on nutrient intake and digestibility, as well as on milk production and composition. Ten primiparous Girolando cows with average body weight ± (SEM) of 373.45 ± (63.55) kg were used in a replicated 5 × 5 Latin square. Animals were subjected to five treatments: (I) grazing cows without supplementation (WCS); (II) grazing cows provided with 5 kg DM of supplement without CRS (0 g/kg DM of CRS) or including (III) 260, (IV) 520, and (V) 780 g/kg DM of CRS. Statistical analyses were performed using the PROC MIXED of SAS with significance at P < 0.05. Intake of neutral detergent fiber (NDF) and ether extract decreased (P < 0.01), while intake of non-fiber carbohydrates increased (P < 0.01), with increased CRS in the diets. Total DM intake and digestibility of DM, and digestibility of nutritional components were lower (P < 0.03) in WCS animals compared to supplemented animals, except for intake and digestibility of NDF, which was the opposite. Milk yield (MY) and fat corrected milk (FCM), as well as all milk components were unaffected (P > 0.05) by CRS inclusion. In contrast, MY, FCM, protein, lactose, casein, and non-fat milk solids (NFMS) were greater for animals that received supplementation (P < 0.05), compared to animals WCS. Milk fat and total dry extract (TMS) did not differ (P > 0.11) between two groups. In conclusion, CRS may be a potential corn meal replacer in the supplement of dairy cows under tropical conditions.


Manihot , Female , Cattle , Animals , Milk , Silage , Kenya , Nutrients , Plant Extracts
6.
Sci Total Environ ; 926: 172114, 2024 May 20.
Article En | MEDLINE | ID: mdl-38561127

The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.


Lactobacillales , Silage , Silage/analysis , Silage/microbiology , Zea mays/microbiology , Lactobacillales/genetics , Anti-Bacterial Agents , Temperature , Fermentation
7.
Microb Biotechnol ; 17(4): e14454, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568756

This study investigates the effectiveness of an exopolysaccharide (EPS)-producing strain (Lactiplantibacillus plantarum L75) alone or in combination with Saccharomyces cerevisiae on the fermentation characteristics, antioxidant capacities and microbial community successions of oat silage stored at various temperatures. A rapid decrease in pH and lactic acid accumulation was observed in silages treated with L. plantarum and S. cerevisiae (LS) as early as 3 days of ensiling (p < 0.05). Over the ensiling period of 7-60 days, L. plantarum (L)-inoculated groups showed the lowest pH, lowest ammonia nitrogen and the highest amount of lactic acid regardless of the storage temperatures. When the oat silage was stored at 15°C, LS-inoculated group exhibited a higher superoxide dismutase (SOD) activity than control and L-inoculated group. Furthermore, the proportion of Lactiplantibacillus in the combined inoculation group increased by 65.42% compared to the L-inoculated group (33.26%). Fungal community data revealed abundant Penicillium carneum in the control and L-inoculated groups stored at 15°C. Conclusively, these results showed that combined inoculation of L. plantarum L75 and S. cerevisiae improved the fermentation quality of oat silage at 15°C, thus proposing a technique for enhancing the fermentation quality of silage in regions with low temperatures during harvest season.


Lactobacillus plantarum , Silage , Silage/microbiology , Saccharomyces cerevisiae , Lactobacillus , Avena , Fermentation , Temperature , Lactic Acid
8.
Anim Sci J ; 95(1): e13938, 2024.
Article En | MEDLINE | ID: mdl-38567743

We compared the in situ dry matter degradability (ISDMD) and crude protein degradability (ISCPD) of high-moisture corn grain silage and dried corn grains produced in Japan (JHC and JDC, respectively) with corn grains imported from the United States (USC), Brazil (BRC), and South Africa (SAC). The ISDMD values of USC, BAC, and SAC were between those of JHC and JDC, but ISDMD did not differ significantly between USC and SAC. In contrast, ISDMD was lower for BAC than USC and SAC. Overall, our results indicate that ISDMD and ISCPD in the rumen differ between corn grains sources (domestic compared with imported and between production locations), primarily due to differences between the corn varieties represented. In particular, the ISDMD and ISCPD of JHC were greater than those of JDC, and this difference in degradability needs to be considered when using high-moisture corn grain silage as a substitute for dried corn grain as a feed for dairy cattle.


Silage , Zea mays , Cattle , Female , Animals , Silage/analysis , Lactation/metabolism , Japan , Diet/veterinary , Rumen/metabolism , Animal Feed/analysis , Digestion , Milk/metabolism , Edible Grain/metabolism
9.
Ecotoxicol Environ Saf ; 276: 116292, 2024 May.
Article En | MEDLINE | ID: mdl-38581911

Calotropis gigantea (Giant milkweed, GM) has the potential to be utilized as a new feed additive for ruminants, however, the presence of unpalatable or toxic compounds decreases animal feed intake. This study aimed to valorize GM as a potential new feed resource through the chemical and microbial biotransformation of toxic compounds that will henceforth, make the plant palatable for cows. After GM's ensiling using fermentative bacteria, the plant was sampled for UHPLC-MS/MS to analyse the metabolomic changes. Illumina Miseq of the 16 S rRNA fragment genes and ITS1 were used to describe the microbial composition and structure colonizing GM silage and contributing to the biodegradation of toxic compounds. Microbial functions were predicted from metataxonomic data and KEGG pathways analysis. Eight Holstein dairy cows assigned in a cross-over design were supplemented with GM and GM silage to evaluate palatability and effects on milk yield and milk protein. Cows were fed their typical diet prior to the experiment (positive control). After ensiling, 23 flavonoids, 47 amino acids and derivatives increased, while the other 14 flavonoids, 9 amino acids and derivatives decreased, indicating active metabolism during the GM ensiling process. Lactobacillus buchneri, Bacteroides ovatus, and Megasphaera elsdenii were specific to ensiled GM and correlated to functional plant metabolites, while Sphingomonas paucimobilis and Staphylococcus saprophyticus were specific to non-ensiled GM and correlated to the toxic metabolite 5-hydroxymethylfurfural."Xenobiotics biodegradation and metabolism", "cancer overview" and "neurodegenerative disease" were the highly expressed microbial KEGG pathways in non-ensiled GM. Non-ensiled GM is unpalatable for cows and drastically reduces the animal's feed intake, whereas ensiled GM does not reduce feed intake, milk yield and milk protein. This study provides essential information for sustainable animal production by valorizing GM as a new feed additive.


Animal Feed , Milk , Silage , Animals , Cattle , Female , Animal Feed/analysis , Lactation , Diet/veterinary
10.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38659415

Many physiological functions are regulated by free fatty acids (FFA). Recently, the discovery of FFA-specific G protein-coupled receptors (FFARs) has added to the complexity of their actions at the cellular level. The study of FFAR in cattle is still in its earliest stages focusing mainly on dairy cows. In this study, we set out to map the expression of genes encoding FFARs in 6 tissues of beef cattle. We also investigated the potential effect of dietary forage nature on FFAR gene expression. To this end, 16 purebred Charolais bulls were fed a grass silage ration or a maize silage ration (n = 8/group) with a forage/concentrate ratio close to 60:40 for 196 d. The animals were then slaughtered at 485 ±â€…42 d and liver, spleen, ileum, rectum, perirenal adipose tissue (PRAT), and Longissimus Thoracis muscle were collected. FFAR gene expression was determined by real-time quantitative PCR. Our results showed that of the five FFARs investigated, FFAR1, FFAR2, FFAR3, and GPR84 are expressed (Ct < 30) in all six tissues, whereas FFAR4 was only expressed (Ct < 30) in PRAT, ileum, and rectum. In addition, our results showed that the nature of the forage, i.e., grass silage or maize silage, had no effect on the relative abundance of FFAR in any of the tissues studied (P value > 0.05). Taken together, these results open new perspectives for studying the physiological role of these receptors in beef cattle, particularly in nutrient partitioning during growth.


Free fatty acids (FFA) are key modulators of bovine physiology. Recently, it has been discovered that some G protein-coupled receptors, termed free fatty acid receptors (FFARs), may help mediate the action of FFA at the cellular level. In humans and rodents, a growing body of evidence has shown that i) FFARs are expressed in a wide range of tissues and ii) FFARs are involved in the regulation of major FFA-dependent physiological processes (inflammation, feed intake, insulin release, etc.). In cattle, information on FFAR expression and function in tissues are scarce and mainly concern dairy cows. In this study, we showed that FFARs are expressed in 6 different tissues of beef cattle: adipose tissue, muscle tissue, ileum, rectum, liver, and spleen. We also showed that the nature of forage fed to the animals (i.e., grass silage vs. maize silage) has no effect on FFARs gene expression.


Diet , Fatty Acids, Nonesterified , Receptors, G-Protein-Coupled , Silage , Animals , Cattle/genetics , Cattle/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Male , Silage/analysis , Fatty Acids, Nonesterified/metabolism , Diet/veterinary , Animal Feed/analysis , Zea mays/genetics , Gene Expression , Gene Expression Regulation
11.
J Environ Manage ; 358: 120837, 2024 May.
Article En | MEDLINE | ID: mdl-38593737

The virus that infects bacteria known as phage, plays a crucial role in the biogeochemical cycling of nutrients. However, the community structure and potential functions of phages in silage fermentation remain largely unexplored. In this study, we utilized viral metagenomics (viromics) to investigate the types, lifestyles, functions, and nutrient utilization patterns of phages in silage. Our findings indicated a high prevalence of annotated phages belonging to Caudovirales and Geplafuvirales, as well as unclassified phages in silage. The predominant host types for these phages were Campylobacterales and Enterobacterales. Virulent phages dominated the silage environment due to their broader range of hosts and enhanced survival capabilities. All identified phages present in silage were found to be non-pathogenic. Although temperate and virulent phages carried distinct genes associated with nutrient cycling processes, the shared genes (prsA) involved in carbon metabolism underscore the potential significance of phages in regulating carbon metabolism in silage. Overall, our findings provide a valuable foundation for further exploring the complex interactions between phages and microorganisms in regulating silage fermentation quality.


Bacteriophages , Fermentation , Silage , Metagenomics
12.
Trop Anim Health Prod ; 56(2): 101, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38478351

The aim of the present study was to analyze the effects of visual morphological classification based on body structure, maturity, and musculosity on the morphometry of the reproduction system and productive parameters of beef heifers. The study was conducted for 84 days, during winter season in Brazil. Thirty non-pregnant Nellore heifers, with an average body weight 338 kg and average age 18 months, were used for the study. The heifers were housed in collective pens and fed corn silage (70%) and concentrate (30%) twice a day. All heifers were weighed weekly without prior fasting. Morphological evaluation of body structure, maturity, and musculosity was conducted in the third-middle of the experimental period by a trained evaluator, adopting a comparative methodology of visual evaluation on a scale from 1 to 6, and the heifers were classified according to the visual assessment. The effects of visual classification, time, and interactions were analyzed, considering significant effects was detected (p < 0.05). The significant (p < 0.05) results obtained were compared using Tukey test. Morphological classification did not influence the morphometry of the reproductive system or implied on time interactions. Body structure, maturity, and musculosity had no effect on dry matter intake, body weight gain, feed efficiency, and carcass dressing. However, body weight and feed efficiency were influenced by the experimental time. For both variables, significant variations were detected after 63 days of finishing in the feedlot (p < 0.001), indicating that maximum productive efficiency of feedlot-finished Nellore beef heifers was achieved at a mean body weight of 424 kg.


Animal Feed , Diet , Cattle , Animals , Female , Diet/veterinary , Animal Feed/analysis , Silage , Body Weight , Genitalia
13.
Trop Anim Health Prod ; 56(2): 104, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483713

We investigated the effects of replacing ground corn with full-fat corn germ (FFCG) on milk production, milk composition, and nutrient use in cows fed sugarcane bagasse and cactus cladodes. Ten multiparous Girolando cows (average body weight 500 ± 66 kg, 90 ± 15 days in milk) were distributed in a replicated 5 × 5 Latin Square and assigned to five dietary treatments containing 0%, 25%, 50%, 75%, or 100% of full-fat corn germ in substitution to ground corn. Full-fat corn germ increased fat-corrected milk yield by 2.2 kg/day and the synthesis of fat, lactose, and total solids in milk by 94.4, 60.0, and 201.10 g/day, respectively (p < 0.05). Cows fed corn germ quadratically increased (p < 0.05) dry matter intake by 1.01 kg/day, with the intake of crude protein and total digestible nutrients following the same pattern. Conversely, the substitution of corn for full-fat corn germ linearly reduced (p < 0.05) the total non-fiber carbohydrate intake from 5.79 to 4.40 kg/d. Except for ether extract and non-fiber carbohydrates, full-fat corn germ did not alter (p > 0.05) nutrient digestibility. Cows fed corn germ excreted less (p < 0.05) urea-N in milk and urine N. These results demonstrate that full-fat corn germ can partially replace ground corn to enhance the milk production efficiency of crossbred cows fed cactus cladodes and sugarcane bagasse. Furthermore, including sugarcane bagasse in FFCG-supplemented diets prevents milk fat depression in cows fed cactus cladodes.


Cactaceae , Saccharum , Female , Cattle , Animals , Milk/metabolism , Cellulose/metabolism , Zea mays , Lactation , Diet/veterinary , Dietary Carbohydrates/metabolism , Digestion , Rumen/metabolism , Silage/analysis
14.
Theor Appl Genet ; 137(3): 75, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453705

KEY MESSAGE: We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic groups selected for silage performances. Selection based on genomic predictions trained on a factorial design resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction experimentally and showed the benefit of updating it along generations.


Hybridization, Genetic , Zea mays , Genomics/methods , Plant Breeding , Silage , Zea mays/genetics
15.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38507148

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Camelus , Lactation , Female , Animals , Milk/chemistry , Milk Proteins/analysis , Zea mays , Fats/analysis , Fats/metabolism , Vitamins/metabolism , Diet/veterinary , Silage/analysis , Rumen/metabolism
16.
Sci Total Environ ; 926: 171808, 2024 May 20.
Article En | MEDLINE | ID: mdl-38508273

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Propionates , Rumen , Animals , Female , Propionates/metabolism , Methane/metabolism , Magnesium Oxide/metabolism , Diet , Silage/analysis , Ruminants , Acetates/metabolism , Oxygen/metabolism , Animal Feed/analysis , Fermentation , Digestion , Lactation
17.
Appl Microbiol Biotechnol ; 108(1): 257, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38456919

Sorghum forage was ensiled for 90 days at two dry matter (DM) contents (27 vs. 39%) without or with Lactiplantibacillus plantarum inoculation. On day 90 of fermentation, silages were sampled to assess the microbial community dynamics and metabolome profile. L. plantarum inoculation improved silage quality, as shown by a lower pH and greater acetic acid concentration. Loss of DM remained unaffected by L. plantarum inoculation but was greater in low- vs. high-DM sorghum silages (14.4 vs. 6.62%). The microbiome analysis revealed that Pseudomonas congelans represented the dominant species of the epiphytic microbiota in both low- and high-DM sorghum forage before ensiling. However, L. buchneri represented the dominant species at the end of ensiling. Ensiling fermentation resulted in distinct metabolic changes in silages with varying DM content. In low-DM silages, ensiling fermentation led to the accumulation of 24 metabolites and a reduction in the relative concentration of 13 metabolites. In high-DM silages, ensiling fermentation resulted in an increase in the relative concentration of 26 metabolites but a decrease in the concentration of 8 metabolites. Compared to non-inoculated silages, L. plantarum inoculation resulted in an increased concentration of 3 metabolites and a reduced concentration of 5 metabolites in low-DM silages. Similarly, in high-DM silages, there was an elevation in the relative concentration of 3 metabolites, while a decrease in 7 other metabolites. Ten metabolites with bio-functional activity were identified, including chrysoeriol, isorhamnetin, petunidin 3-glucoside, apigenin, caffeic acid, gallic acid, p-coumaric acid, trans-cinnamic acid, herniarin, and 3,4-dihydroxy-trans-cinnamate. This study presents a comprehensive analysis of microbiome and metabolome profiling of sorghum forage during ensiling as a function of DM content and L. plantarum inoculation, with a particular emphasis on identifying metabolites that may possess bio-functional properties. KEY POINTS: • DM loss was not different by L. plantarum but higher in low- vs. high-DM silage. • L. buchneri dominated ensiling, regardless of DM level. • 10 metabolites with bio-functional activity were identified.


Microbiota , Sorghum , Silage , Lactobacillus/metabolism , Zea mays/metabolism , Metabolome , Fermentation
18.
Sensors (Basel) ; 24(5)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38474933

Harvesting corn at the proper maturity is important for managing its nutritive value as livestock feed. Standing whole-plant moisture content is commonly utilized as a surrogate for corn maturity. However, sampling whole plants is time consuming and requires equipment not commonly found on farms. This study evaluated three methods of estimating standing moisture content. The most convenient and accurate approach involved predicting ear moisture using handheld near-infrared reflectance spectrometers and applying a previously established relationship to estimate whole-plant moisture from the ear moisture. The ear moisture model was developed using a partial least squares regression model in the 2021 growing season utilizing reference data from 610 corn plants. Ear moisture contents ranged from 26 to 80 %w.b., corresponding to a whole-plant moisture range of 55 to 81 %w.b. The model was evaluated with a validation dataset of 330 plants collected in a subsequent growing year. The model could predict whole-plant moisture in 2022 plants with a standard error of prediction of 2.7 and an R2P of 0.88. Additionally, the transfer of calibrations between three spectrometers was evaluated. This revealed significant spectrometer-to-spectrometer differences that could be mitigated by including more than one spectrometer in the calibration dataset. While this result shows promise for the method, further work should be conducted to establish calibration stability in a larger geographical region.


Silage , Zea mays , Zea mays/chemistry , Silage/analysis , Farms , Least-Squares Analysis , Spectroscopy, Near-Infrared/methods
19.
Sci Rep ; 14(1): 5856, 2024 03 11.
Article En | MEDLINE | ID: mdl-38467697

Combined application of organic and mineral fertilizers is crucial to obtaining high crop yields, increasing the utilization of nutrients by plants, and limiting their dispersion, thus protecting the environment, which underscores the importance of sustainable and minimally invasive agriculture. The aim of the field experiment was to determine the effect of application of rabbit manure (RM) and mineral nitrogen (Nmin) on the dry matter (DM) yield of maize and on nitrogen content, uptake, and use efficiency (NUE). RM application was tested at levels of 0, 20, 40 and 60 t·ha-1, and Nmin application at 0, 50, 100 and 150 kg·ha-1. Significant differences were noted in yield and in the content and uptake of nitrogen depending on both experimental factors. Increasing the application of RM and Nmin led to an increase in the yield of harvested maize and in the content and uptake of nitrogen. In terms of DM yield and nitrogen uptake (yield of crude protein), the most beneficial fertilizer variant was 60 t·ha-1 RM applied together with 100 kg·ha-1 Nmin. The highest NUE value was obtained following application of 20 t·ha-1 RM together with 150 kg·ha-1 Nmin.


Manure , Soil , Animals , Rabbits , Zea mays , Nitrogen/analysis , Silage , Agriculture , Minerals , Fertilizers/analysis , Fertilization
20.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38442241

This study evaluated the effect of feeding ergot contaminated grain continuously or intermittently through backgrounding (BG) and finishing (FN) in a mash or pelleted supplement on the growth performance, health and welfare parameters, and carcass characteristics of feedlot beef steers. Sixty black Angus steers (300 ±â€…29.4 kg BW) were used in a complete randomized 238-d study. Steers were stratified by weight and randomly assigned to four different diets (15 steers/treatment) and individually housed. Treatments included: (1) control [CON; no added ergot alkaloids (EA)], (2) continuous ergot mash (CEM; fed continuously at 2 mg total EA/kg of DM), (3) intermittent ergot mash (IEM; fed at 2 mg total EA/kg of DM, during the first week of each 21-d period and CON for the remaining 2 wk, this feeding pattern was repeated in each period), and (4) intermittent ergot pellet (IEP; fed at 2 mg of total EA/kg of DM as a pellet during the first week of each 21-d period and CON for the remaining 2 wk as described for IEM). Steers were fed barley based BG diets containing 40% concentrate:60% silage (DM basis) for 84 d (four 21-d periods), transitioned over 28 d (no ergot fed) to an FN diet (90% concentrate:10% silage DM basis) and fed for 126 d (six 21-d periods) before slaughter. In the BG phase, steer DMI (P < 0.01, 7.45 vs. 8.05 kg/d) and ADG (P < 0.01) were reduced for all EA diets compared to CON. The CEM fed steers had lower ADG (P < 0.01, 0.735 vs. 0.980 kg) and shrunk final BW (P < 0.01, 350 vs. 366 kg) than CON. CEM had lower gain:feed (P < 0.07, 0.130 vs. 0.142) than CON. In the FN phase, steer DMI (P < 0.01, 9.95 vs. 11.05 kg/d) and ADG (P = 0.04) were also decreased for all EA fed steers compared to CON. Total shrunk BW gain (P = 0.03, 202.5 vs. 225.2 kg), final BW (P = 0.03, 617.9 vs. 662.2 kg), and carcass weight (P = 0.06) decreased for all EA fed steers compared to CON. The percentage of AAA carcasses decreased for all EA fed steers (P < 0.01, 46.7 vs. 93.3%) compared to CON. EA fed steers had increased rectal temperatures (P < 0.01, 39.8 vs. 39.4 °C) compared to CON. Pelleting ergot contaminated grain did not reduce the impact of ergot alkaloids on any of the measured parameters during BG or FN. Continuously or intermittently feeding ergot contaminated diets (2 mg total EA/kg of DM) significantly reduced intake, growth performance, and carcass weight, with minimal impact on blood parameters in feedlot steers. Pelleting was not an effective method of reducing ergot toxicity.


Produced by the fungus Claviceps purpurea, ergot alkaloids (EA) are toxic to beef cattle when consumed and can lead to reduction in feed intake and growth performance, vasoconstriction of the blood vessels, hyperthermia, damage to extremities (ears, tails, and hooves) and in severe cases, death. Grain is often cleaned to meet quality standards, and the resulting screenings are often utilized for feeding livestock and can have high concentrations of EA. The application of heat during pelleting of EA contaminated grain has been suggested to reduce its toxicity. Backgrounding and finishing beef cattle feeding experiments were conducted to assess the effect of continuously or intermittently feeding EA contaminated grain (2 mg/kg of diet DM) either as a pellet or as mash on growth performance, health, and animal welfare. Feeding EA grain continuously or intermittently either as a mash or pellet drastically reduced growth performance of steers, with no difference between treatments.


Animal Feed , Ergot Alkaloids , Cattle , Animals , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Silage/analysis , Edible Grain
...